Recent experiments (Angew. Chem. Int. Ed. 50, 2085 (2011)) have demonstrated that the optical transmission through an array of subwavelength holes in a metal film can be enhanced by the intentional presence of dyes in the system. As the transmission maxima occurs spectrally close to the absorption resonances of the dyes, this phenomenon was christened Absorption Induced Transparency. Here, a theoretical study on Absorption Induced Transparency is presented. The results show that the appearance of transmission maxima requires that the absorbent fills the holes and that it occurs also for single holes. Furthermore, it is shown that the transmission process is non-resonant, being composed by a sequential passage of the EM field through the hole. Finally, the physical origin of the phenomenon is demonstrated to be non-plasmonic, which implies that Absorption Induced Transparency should also occur at the infrared or Terahertz frequency regimes.