The choosability $chi_ell(G)$ of a graph $G$ is the minimum $k$ such that having $k$ colors available at each vertex guarantees a proper coloring. Given a toroidal graph $G$, it is known that $chi_ell(G)leq 7$, and $chi_ell(G)=7$ if and only if $G$ contains $K_7$. Cai, Wang, and Zhu proved that a toroidal graph $G$ without 7-cycles is 6-choosable, and $chi_ell(G)=6$ if and only if $G$ contains $K_6$. They also prove that a toroidal graph $G$ without 6-cycles is 5-choosable, and conjecture that $chi_ell(G)=5$ if and only if $G$ contains $K_5$. We disprove this conjecture by constructing an infinite family of non-4-colorable toroidal graphs with neither $K_5$ nor cycles of length at least 6; moreover, this family of graphs is embeddable on every surface except the plane and the projective plane. Instead, we prove the following slightly weaker statement suggested by Zhu: toroidal graphs containing neither $K^-_5$ (a $K_5$ missing one edge) nor 6-cycles are 4-choosable. This is sharp in the sense that forbidding only one of the two structures does not ensure that the graph is 4-choosable.