We present a theoretical study on the impact of an active optical layer on the emission properties of an ultrathin luminescent film. While the study can be generalized to any material, we focus here on a simple layered medium composed of a conjugated polymers (CPs) thin film, a zinc oxide layer (ZnO) and a sapphire substrate. The study spreads throughout variable aspects including the effect of the structure parameters on the CP luminescence and radiation pattern and more specifically the influence of the absorption and emission properties of the active layer. Comparing between the passive and active layer cases, the obtained results show that an enhancement of the CP luminescence of more than 20 times can be obtained by using an optically active underlying layer. The results can be explained in terms of photon recycling where the optically active layer acts as a photon reservoir and a secondary light source for the ultra thin film. This general concept is of a special interest for ultra-trace chemosensor.