The crystal structure and magnetic properties of MnCoxFe1-xSi (x=0-0.5) compounds were investigated. With increasing Fe content, the unit cell changes anisotropically and the magnetic property evolves gradually: Curie temperature decreases continuously, the first-order metamagnetic transition from a low-temperature helical antiferromagnetic state to a high-temperature ferromagnetic state disappears gradually and then a spin-glass-like state and another antiferromagnetic state emerge in the low temperature region. The Curie transition leads to a moderate conventional entropy change. The metamagnetic transition not only yields a larger negative magnetocaloric effect at lower applied fields than in MnCoSi but also produces a very large temperature span (103 K for H=5 T) of delta S(T), which results in a large refrigerant capacity. These phenomena were explained in terms of crystal structure change and magnetoelastic coupling mechanism. The low-cost MnCo1-xFexSi compounds are promising candidates for near room temperature magnetic refrigeration applications because of the large isothermal entropy change and the wide working temperature span.