Quantum Fluctuation Driven First-order Phase Transitions in Optical Lattices


الملخص بالإنكليزية

We study quantum fluctuation driven first-order phase transitions of a two-species bosonic system in a three-dimensional optical lattice. Using effective potential method we find that the superfluid-Mott insulator phase transition of one type of bosons can be changed from second-order to first-order by the quantum fluctuations of the other type of bosons. The study of the scaling behaviors near the quantum critical point shows that the first-order phase transition has a different universality from the second-order one. We also discuss the observation of this exotic phenomenon in the realistic cold-atom experiments.

تحميل البحث