We consider energy-efficient wireless resource management in cellular networks where BSs are equipped with energy harvesting devices, using statistical information for traffic intensity and harvested energy. The problem is formulated as adapting BSs on-off states, active resource blocks (e.g. subcarriers) as well as power allocation to minimize the average grid power consumption in a given time period while satisfying the users quality of service (blocking probability) requirements. It is transformed into an unconstrained optimization problem to minimize a weighted sum of grid power consumption and blocking probability. A two-stage dynamic programming (DP) algorithm is then proposed to solve this optimization problem, by which the BSs on-off states are optimized in the first stage, and the active BSs resource blocks are allocated iteratively in the second stage. Compared with the optimal joint BSs on-off states and active resource blocks allocation algorithm, the proposed algorithm greatly reduces the computational complexity, while at the same time achieves close to the optimal energy saving performance.