Identifying gaps in flaring Herbig Ae/Be disks using spatially resolved mid-infrared imaging. Are all group I disks transitional?


الملخص بالإنكليزية

*Context The evolution of young massive protoplanetary disks toward planetary systems is expected to include the formation of gaps and the depletion of dust and gas. *Aims A special group of flaring disks around Herbig Ae/Be stars do not show prominent silicate emission features. We focus our attention on four key Herbig Ae/Be stars to understand the structural properties responsible for the absence of silicate feature emission. *Methods We investigate Q- and N-band images taken with Subaru/COMICS, Gemini South/T-ReCS and VLT/VISIR. Our radiative transfer modeling solutions require a separation of inner- and outer- disks by a large gap. From this we characterize the radial density structure of dust and PAHs in the disk. *Results The inner edge of the outer disk has a high surface brightness and a typical temperature between ~100-150 K and therefore dominates the emission in the Q-band. We derive radii of the inner edge of the outer disk of 34, 23, 30 and 63 AU for HD97048, HD169142, HD135344B and Oph IRS 48 respectively. For HD97048 this is the first detection of a disk gap. The continuum emission in the N-band is not due to emission in the wings of PAHs. This continuum emission can be due to VSGs or to thermal emission from the inner disk. We find that PAH emission is not always dominated by PAHs on the surface of the outer disk. *Conclusions. The absence of silicate emission features is due to the presence of large gaps in the critical temperature regime. Many, if not all Herbig disks with Spectral Energy Distribution (SED) classification `group I are disks with large gaps and can be characterized as (pre-) transitional. An evolutionary path from the observed group I to the observed group II sources seems no longer likely. Instead, both might derive from a common ancestor.

تحميل البحث