We present APEX observations of C17O(2-1), N2H+(3-2), and N2D+(3-2) towards the subfragments inside the prestellar core SMM 6 in Orion B9. We combined these spectral line data with our previous SABOCA 350-{mu}m dust continuum map of the source. The subfragments are characterised by subsonic internal non-thermal motions ({sigma}NT~0.5cs), and most of them appear to be gravitationally bound. The dispersion of the N2H+ velocity centroids among the condensations is very low (0.02 km/s). The CO depletion factors we derive, fD=0.8+/-0.4 - 3.6+/-1.5, do not suggest any significant CO freeze-out but this may be due to the canonical CO abundance we adopt. The fractional abundances of N2H+ and N2D+ with respect to H2 are found to be ~0.9-2.3x10^-9 and ~4.9-9.9x10^-10, respectively. The deuterium fractionation of N2H+, or the N2D+/N2H+ column density ratio, lies in the range 0.30+/-0.07 - 0.43+/-0.09. The detected substructure inside SMM 6 is likely the result of cylindrical Jeans-type gravitational fragmentation. We estimate the timescale for this fragmentation to be ~1.8x10^5 yr. The condensations are unlikely to be able to interact with one another and coalesce before local gravitational collapse ensues. Moreover, significant mass growth of the condensations via competitive-like accretion from the parent core seems unfeasible. The high level of molecular deuteration in the condensations suggests that gas-phase CO should be strongly depleted. It also points towards an advanced stage of chemical evolution. The subfragments of SMM 6 might therefore be near the onset of gravitational collapse, but whether they can form protostellar or substellar objects (brown dwarfs) depends on the local star formation efficiency and remains to be clarified.