Organic scintillators are often chosen as radiation detectors for their fast decay time and their low Z, while inorganic ones are used when high light ields are required. In this paper we show that a para-terphenyl based detector has a blend of properties of the two categories that can be optimal for energy and position measurements of low energy charged particles. On 0.1% diphenylbutadiene doped para-terphenyl samples we measure a light yield 3.5+-0.2 times larger than a typical organic scintillator (EJ-200), and a rejection power for 660 keV photons, with respect to electrons of the same energy, ranging between 3-11%, depending on the signal threshold. We also measure a light attenuation length = 4.73+-0.06 mm and we demonstrate that, with the measurements performed in this paper, a simulation based on FLUKA can properly reproduce the measured spectra.