Magnetic and electric properties of CaMn7O12 based multiferroic compounds: effect of electron doping


الملخص بالإنكليزية

The mixed-valent multiferroic compound CaMn7O12 is studied for its magnetic and electric properties. The compound undergoes magnetic ordering below 90 K with a helimagnetic structure followed by a low temperature magnetic anomaly observed around 43 K. The present study shows that the magnetic anomaly at 43 K is associated with thermal hysteresis indicating first order nature of the transition. The compound also shows field-cooled magnetic memory and relaxation below 43 K, although no zero-field-cooled memory is present. Clear magnetic hysteresis loop is present in the magnetization versus field measurements signifying the presence of some ferromagnetic clusters in the system. We doped trivalent La at the cite of divalent Ca expecting to enhance the fraction of Mn$^{3+}$ ions. The La doped samples show reduced magnetization, although the temperatures associated with the magnetic anomalies remain almost unaltered. Interestingly, the spontaneous electrical polarization below 90 K increases drastically on La substitution. We propose that the ground state of the pure as well as the La doped compositions contain isolated superparamagnetic like clusters, which can give rise to metastability in the form of field-cooled memory and relaxation. The ground state is not certainly spin glass type as it is evident from the absence of zero-field-cooled memory and frequency shift in the ac suceptibility measurements.

تحميل البحث