We study the minimum latency broadcast scheduling (MLBS) problem in Single-Radio Multi-Channel (SR-MC) wireless ad-hoc networks (WANETs), which are modeled by Unit Disk Graphs. Nodes with this capability have their fixed reception channels, but can switch their transmission channels to communicate with their neighbors. The single-radio and multi-channel model prevents existing algorithms for single-channel networks achieving good performance. First, the common assumption that one transmission reaches all the neighboring nodes does not hold naturally. Second, the multi-channel dimension provides new opportunities to schedule the broadcast transmissions in parallel. We show MLBS problem in SR-MC WANETs is NP-hard, and present a benchmark algorithm: Basic Transmission Scheduling (BTS), which has approximation ratio of 4k + 12. Here k is the number of orthogonal channels in SR-MC WANETs. Then we propose an Enhanced Transmission Scheduling (ETS) algorithm, improving the approximation ratio to k + 23. Simulation results show that ETS achieves better performance over BTS, and the performance of ETS approaches the lower bound.