Jump-sparse and sparse recovery using Potts functionals


الملخص بالإنكليزية

We recover jump-sparse and sparse signals from blurred incomplete data corrupted by (possibly non-Gaussian) noise using inverse Potts energy functionals. We obtain analytical results (existence of minimizers, complexity) on inverse Potts functionals and provide relations to sparsity problems. We then propose a new optimization method for these functionals which is based on dynamic programming and the alternating direction method of multipliers (ADMM). A series of experiments shows that the proposed method yields very satisfactory jump-sparse and sparse reconstructions, respectively. We highlight the capability of the method by comparing it with classical and recent approaches such as TV minimization (jump-sparse signals), orthogonal matching pursuit, iterative hard thresholding, and iteratively reweighted $ell^1$ minimization (sparse signals).

تحميل البحث