We investigate, using the Hierarchy method, the entanglement and the excitation transfer efficiency of the Fenna-Matthews-Olson complex under two different local modifications: the suppression of transitions between particular sites and localized changes to the protein environment. We find that inhibiting the connection between the site-5 and site-6, or disconnecting site-5 from the complex completely, leads to an dramatic enhancement of the entanglement between site-6 and site-7. Similarly, the transfer efficiency actually increases if site-5 is disconnected from the complex entirely. We further show that if site-5 and site-7 are conjointly removed, the efficiency falls. This suggests that while not contributing to the transport efficiency in a normal complex, site-5 introduces a redundant transport route in case of damage to site-7. Our results suggest an overall robustness of excitation energy transfer in the FMO complex under mutations, local defects, and other abnormal situations.