Measuring local temperature with a spatial resolution on the order of a few nanometers has a wide range of applications from semiconductor industry over material to life sciences. When combined with precision temperature measurement it promises to give excess to small temperature changes caused e.g. by chemical reactions or biochemical processes. However, nanoscale temperature measurements and precision have excluded each other so far owing to the physical processes used for temperature measurement of limited stability of nanoscale probes. Here we experimentally demonstrate a novel nanoscale temperature sensing technique based on single atomic defects in diamonds. Sensor sizes range from millimeter down to a few tens of nanometers. Utilizing the sensitivity of the optically accessible electron spin level structure to temperature changes we achieve a temperature noise floor of 5 mK Hz$^{-1/2}$ for single defects in bulk sensors. Using doped nanodiamonds as sensors yields temperature measurement with 130 mK Hz$^{-1/2}$ noise floor and accuracies down to 1 mK at length scales of a few ten nanometers. The high sensitivity to temperature changes together with excellent spatial resolution combined with outstanding sensor stability allows for nanoscale precision temperature determination enough to measure chemical processes of few or single molecules by their reaction heat even in heterogeneous environments like cells.