Layered transition-metal dichalcogenides 1T-TaS2-xSex (0<=x<=2) single crystals have been successfully fabricated by using a chemical vapor transport technique in which Ta locates in octahedral coordination with S and Se atoms. This is the first superconducting example by the substitution of S site, which violates an initial rule based on the fact that superconductivity merely emerges in 1T-TaS2 by applying the high pressure or substitution of Ta site. We demonstrate the appearance of a series of electronic states in 1T-TaS2-xSex with Se content. Namely, the Mott phase melts into a nearly commensurate charge-density-wave (NCCDW) phase, superconductivity in a wide x range develops within the NCCDW state, and finally commensurate charge-density-wave (CCDW) phase reproduces for heavy Se content. The present results reveal that superconductivity is only characterized by robust Ta 5d band, demonstrating the universal nature in 1T-TaS2 systems that superconductivity and NCCDW phase coexist in the real space.