Nondegeneracy of critical points of the mean curvature of the boundary for Riemannian manifolds


الملخص بالإنكليزية

Let $M$ be a compact smooth Riemannian manifold of finite dimension $n+1$ with boundary $partial M$and $partial M$ is a compact $n$-dimensional submanifold of $M$. We show that for generic Riemannian metric $g$, all the critical points of the mean curvature of $partial M$ are nondegenerate.

تحميل البحث