Differential graded categories and Deligne conjecture


الملخص بالإنكليزية

We prove a version of the Deligne conjecture for $n$-fold monoidal abelian categories $A$ over a field $k$ of characteristic 0, assuming some compatibility and non-degeneracy conditions for $A$. The output of our construction is a weak Leinster $(n,1)$-algebra over $k$, a relaxed version of the concept of Leinster $n$-algebra in $Alg(k)$. The difference between the Leinster original definition and our relaxed one is apparent when $n>1$, for $n=1$ both concepts coincide. We believe that there exists a functor from weak Leinster $(n,1)$-algebras over $k$ to $C(E_{n+1},k)$-algebras, well-defined when $k=mathbb{Q}$, and preserving weak equivalences. For the case $n=1$ such a functor is constructed in [Sh4] by elementary simplicial methods, providing (together with this paper) a complete solution for 1-monoidal abelian categories. Our approach to Deligne conjecture is divided into two parts. The first part, completed in the present paper, provides a construction of a weak Leinster $(n,1)$-algebra over $k$, out of an $n$-fold monoidal $k$-linear abelian category (provided the compatibility and non-degeneracy condition are fulfilled). The second part (still open for $n>1$) is a passage from weak Leinster $(n,1)$-algebras to $C(E_{n+1},k)$-algebras. As an application, we prove that the Gerstenhaber-Schack complex of a Hopf algebra over a field $k$ of characteristic 0 admits a structure of a weak Leinster (2,1)-algebra over $k$ extending the Yoneda structure. It relies on our earlier construction [Sh1] of a 2-fold monoidal structure on the abelian category of tetramodules over a bialgebra.

تحميل البحث