Let $G$ be a finite cyclic group. Every sequence $S$ of length $l$ over $G$ can be written in the form $S=(n_1g)cdotldotscdot(n_lg)$ where $gin G$ and $n_1, ldots, n_lin[1, ord(g)]$, and the index $ind(S)$ of $S$ is defined to be the minimum of $(n_1+cdots+n_l)/ord(g)$ over all possible $gin G$ such that $langle g rangle =G$. In this paper, we determine the index of any minimal zero-sum sequence $S$ of length 5 when $G=langle grangle$ is a cyclic group of a prime order and $S$ has the form $S=g^2(n_2g)(n_3g)(n_4g)$. It is shown that if $G=langle grangle$ is a cyclic group of prime order $p geq 31$, then every minimal zero-sum sequence $S$ of the above mentioned form has index 1 except in the case that $S=g^2(frac{p-1}{2}g)(frac{p+3}{2}g)((p-3)g)$.