Higgs bundles for the non-compact dual of the special orthogonal group


الملخص بالإنكليزية

Higgs bundles over a closed orientable surface can be defined for any real reductive Lie group G. In this paper we examine the case G=SO*(2n). We describe a rigidity phenomenon encountered in the case of maximal Toledo invariant. Using this and Morse theory in the moduli space of Higgs bundles, we show that the moduli space is connected in this maximal Toledo case. The Morse theory also allows us to show connectedness when the Toledo invariant is zero. The correspondence between Higgs bundles and surface group representations thus allows us to count the connected components with zero and maximal Toledo invariant in the moduli space of representations of the fundamental group of the surface in SO*(2n).

تحميل البحث