Scale-dependent correction to the dynamical conductivity of a disordered system at unitary symmetry


الملخص بالإنكليزية

Anderson localization has been studied extensively for more than half a century. However, while our understanding has been greatly enhanced by calculations based on a small epsilon expansion in d = 2 + epsilon dimensions in the framework of non-linear sigma models, those results can not be safely extrapolated to d = 3. Here we calculate the leading scale-dependent correction to the frequency-dependent conductivity sigma(omega) in dimensions d <= 3. At d = 3 we find a leading correction Re{sigma(omega)} ~ |omega|, which at low frequency is much larger than the omega^2 correction deriving from the Drude law. We also determine the leading correction to the renormalization group beta-function in the metallic phase at d = 3.

تحميل البحث