It is not known if, in addition to the Newtons inverse square law component, the gravitational force has some non-Newtonian, long-range components that have escaped detection until now. For example, the non-Newtonian component of the gravitational force naturally arises if gravity is interpreted as an entropic force, or under far reaching hypothesis that quantum vacuum contains virtual gravitational dipoles. We point out that some trans-Neptunian objects (for instance a binary system or a dwarf planet with its satellite) might be a good laboratory to establish the eventual existence of non-Newtonian components of gravity. The key points are that, in the case of an ideal two-body system, the perihelion precession can be caused only by a gravitational force that deviates from the inverse square law and that the perihelion precession rate is larger in systems with smaller mass. It is shown, that in some trans-Neptunian (two-body) systems, the perihelion precession rate caused by internal interactions might be larger than the (inevitable) precession induced by external gravitational field.