Entangling photons via the quantum Zeno effect


الملخص بالإنكليزية

The quantum Zeno effect describes the inhibition of quantum evolution by frequent measurements. Here, we propose a scheme for entangling two given photons based on this effect. We consider a linear-optics set-up with an absorber medium whose two-photon absorption rate $xi_{2gamma}$ exceeds the one-photon loss rate $xi_{1gamma}$. In order to reach an error probability $P_{rm error}$, we need $xi_{1gamma}/xi_{2gamma}<2P_{rm error}^2/pi^2$, which is a factor of 64 better than previous approaches (e.g., by Franson et al). Since typical media have $xi_{2gamma}<xi_{1gamma}$, we discuss three mechanisms for enhancing two-photon absorption as compared to one-photon loss. The first mechanism again employs the quantum Zeno effect via self-interference effects when sending two photons repeatedly through the same absorber. The second mechanism is based on coherent excitations of many atoms and exploits the fact that $xi_{2gamma}$ scales with the number of excitations but $xi_{1gamma}$ does not. The third mechanism envisages three-level systems where the middle level is meta-stable ($Lambda$-system). In this case, $xi_{1gamma}$ is more strongly reduced than $xi_{2gamma}$ and thus it should be possible to achieve $xi_{2gamma}/xi_{1gamma}gg1$. In conclusion, although our scheme poses challenges regarding the density of active atoms/molecules in the absorber medium, their coupling constants and the detuning, etc., we find that a two-photon gate with an error probability $P_{rm error}$ below 25% might be feasible using present-day technology.

تحميل البحث