The Self-Assembly of Nano-Objects Code: Applications to supramolecular organic monolayers adsorbed on metal surfaces


الملخص بالإنكليزية

The Self-Assembly of Nano-Objects (SANO) code we implemented demonstrates the ability to predict the molecular self-assembly of different structural motifs by tuning the molecular building blocks as well as the metallic substrate. It consists in a two-dimensional Grand Canonical Monte-Carlo (GCMC) approach developed to perform atomistic simulations of thousands of large organic molecules self-assembling on metal surfaces. Computing adsorption isotherms at room temperature and spanning over the characteristic sub-micrometric scales, we confront the robustness of the approach with three different well-known systems: ZnPcCl8 on Ag(111), CuPcF16 on Au(111) and PTBC on Ag(111). We retrieve respectively their square, oblique and hexagonal supramolecular tilling. The code incorporates generalized force fields to describe the molecular interactions, which provides transferability and versatility to many organic building blocks and metal surfaces.

تحميل البحث