Two groups are said to have the same nilpotent genus if they have the same nilpotent quotients. We answer four questions of Baumslag concerning nilpotent completions. (i) There exists a pair of finitely generated, residually torsion-free-nilpotent groups of the same nilpotent genus such that one is finitely presented and the other is not. (ii) There exists a pair of finitely presented, residually torsion-free-nilpotent groups of the same nilpotent genus such that one has a solvable conjugacy problem and the other does not. (iii) There exists a pair of finitely generated, residually torsion-free-nilpotent groups of the same nilpotent genus such that one has finitely generated second homology $H_2(-,Z)$ and the other does not. (iv) A non-trivial normal subgroup of infinite index in a finitely generated parafree group cannot be finitely generated. In proving this last result, we establish that the first $L^2$ betti number of a finitely generated parafree group of rank $r$ is $r-1$. It follows that the reduced $C^*$-algebra of the group is simple if $rge 2$, and that a version of the Freiheitssatz holds for parafree groups.