Neutron diffraction measurements, performed in presence of an external magnetic field, have been used to show structural evidence for the kinetic arrest of the first-order phase transition from the high temperature austenite phase to the low temperature martensite phase in the magnetic shape memory alloy Ni37Co11Mn42.5Sn9.5 and the formation of a glass-like arrested state (GLAS). The CHUF (cooling and heating under unequal fields) protocol has been used to establish phase coexistence of metastable and equilibrium states of GLAS in the neutron diffraction patterns. We also explore the field-temperature (H,T) phase diagram for this composition which depicts the kinetic arrest line TK(H). TK is seen to increase as H increases.