Primary Beam and Dish Surface Characterization at the Allen Telescope Array by Radio Holography


الملخص بالإنكليزية

The Allen Telescope Array (ATA) is a cm-wave interferometer in California, comprising 42 antenna elements with 6-m diameter dishes. We characterize the antenna optical accuracy using two-antenna interferometry and radio holography. The distortion of each telescope relative to the average is small, with RMS differences of 1 percent of beam peak value. Holography provides images of dish illumination pattern, allowing characterization of as-built mirror surfaces. The ATA dishes can experience mm-scale distortions across -2 meter lengths due to mounting stresses or solar radiation. Experimental RMS errors are 0.7 mm at night and 3 mm under worst case solar illumination. For frequencies 4, 10, and 15 GHz, the nighttime values indicate sensitivity losses of 1, 10 and 20 percent, respectively. The ATA.s exceptional wide-bandwidth permits observations over a continuous range 0.5 to 11.2 GHz, and future retrofits may increase this range to 15 GHz. Beam patterns show a slowly varying focus frequency dependence. We probe the antenna optical gain and beam pattern stability as a function of focus and observation frequency, concluding that ATA can produce high fidelity images over a decade of simultaneous observation frequencies. In the day, the antenna sensitivity and pointing accuracy are affected. We find that at frequencies greater than 5 GHz, daytime observations greater than 5 GHz will suffer some sensitivity loss and it may be necessary to make antenna pointing corrections on a 1 to 2 hourly basis.

تحميل البحث