Spin Imbalance and Spin-Charge Separation in a Mesoscopic Superconductor


الملخص بالإنكليزية

What happens to spin-polarised electrons when they enter a superconductor? Superconductors at equilibrium and at finite temperature contain both paired particles (of opposite spin) in the condensate phase as well as unpaired, spin-randomised quasiparticles. Injecting spin-polarised electrons into a superconductor thus creates both spin and charge imbalances [1, 2, 3, 4, 5, 6, 7] (respectively Q* and S*, cf. Ref. [4]). These must relax when the injection stops, but not necessarily over the same time (or length) scale as spin relaxation requires spin-dependent interactions while charge relaxation does not. These different relaxation times can be probed by creating a dynamic equilibrium between continuous injection and relaxation, which leads to constant-in-time spin and charge imbalances. These scale with their respective relaxation times and with the injection current. While charge imbalances in superconductors have been studied in great detail both theoretically [8] and experimentally [9], spin imbalances have not received much experimental attention [6, 10] despite intriguing theoretical predictions of spin-charge separation effects [11, 12]. These could occur e.g. if the spin relaxation time is longer than the charge relaxation time, i.e. Q* relaxes faster than S*. Fundamentally, spin-charge decoupling in superconductors is possible because quasiparticles can have any charge between e and -e, and also because the condensate acts as a particle reservoir [13, 11, 12]. Here we present evidence for an almost-chargeless spin imbalance in a mesoscopic superconductor.

تحميل البحث