We describe how complex fluctuations of the local environment of an optically active quantum dot can leave rich fingerprints in its emission spectrum. A new feature, termed Fluctuation Induced Luminescence (FIL), is observed to arise from extremely rare fluctuation events that have a dramatic impact on the response of the system-so called black swan events. A quantum dissipative master equation formalism is developed to describe this effect phenomenologically. Experiments performed on single quantum dots subject to electrical noise show excellent agreement with our theory, producing the characteristic FIL sidebands.