The Supremum Norm of the Discrepancy Function: Recent Results and Connections


الملخص بالإنكليزية

A great challenge in the analysis of the discrepancy function D_N is to obtain universal lower bounds on the L-infty norm of D_N in dimensions d geq 3. It follows from the average case bound of Klaus Roth that the L-infty norm of D_N is at least (log N) ^{(d-1)/2}. It is conjectured that the L-infty bound is significantly larger, but the only definitive result is that of Wolfgang Schmidt in dimension d=2. Partial improvements of the Roth exponent (d-1)/2 in higher dimensions have been established by the authors and Armen Vagharshakyan. We survey these results, the underlying methods, and some of their connections to other subjects in probability, approximation theory, and analysis.

تحميل البحث