We present a detailed photometric study of the peculiar double ringed galaxy ESO474-G26. Near-Infrared (NIR) and optical data have been used, with the main goal to constrain the formation history of ESO474-G26. NIR photometry is fundamental in this kind of study, because gives better constraints on the Spectral Energy Distribution (SED) and well traces the older stellar population of the galaxy. This galaxy presents a very complex structure, with two almost orthogonal rings, one in the equatorial and another in the polar plane, around an elliptical-like object. Due to the peculiar morphology of ESO474-G26, we used both NIR images (J and K bands) to derive accurate analysis of the stellar light distribution, and optical images (in the B, V and R bands) to derive color profiles and color maps to study the structure of the rings. The observational characteristic of ESO474-G26 are typical of galaxies which have experienced some kind of interactions during their evolution. We investigated two alternatives: a merging process and an accretion event.