Let $mathcal{O}_n$ be the set of ordered labeled trees on ${0,...,n}$. A maximal decreasing subtree of an ordered labeled tree is defined by the maximal ordered subtree from the root with all edges being decreasing. In this paper, we study a new refinement $mathcal{O}_{n,k}$ of $mathcal{O}_n$, which is the set of ordered labeled trees whose maximal decreasing subtree has $k+1$ vertices.