We show that weak antilocalization by disorder competes with resonant Andreev reflection from a Majorana zero-mode to produce a zero-voltage conductance peak of order e^2/h in a superconducting nanowire. The phase conjugation needed for quantum interference to survive a disorder average is provided by particle-hole symmetry - in the absence of time-reversal symmetry and without requiring a topologically nontrivial phase. We identify methods to distinguish the Majorana resonance from the weak antilocalization effect.