Reentrant phase transitions and multicompensation points in the mixed-spin Ising ferrimagnet on a decorated Bethe lattice


الملخص بالإنكليزية

Mixed-spin Ising model on a decorated Bethe lattice is rigorously solved by combining the decoration-iteration transformation with the method of exact recursion relations. Exact results for critical lines, compensation temperatures, total and sublattice magnetizations are obtained from a precise mapping relationship with the corresponding spin-1/2 Ising model on a simple (undecorated) Bethe lattice. The effect of next-nearest-neighbour interaction and single-ion anisotropy on magnetic properties of the ferrimagnetic model is investigated in particular. It is shown that the total magnetization may exhibit multicompensation phenomenon and the critical temperature vs. the single-ion anisotropy dependence basically changes with the coordination number of the underlying Bethe lattice. The possibility of observing reentrant phase transitions is related to a high enough coordination number of the underlying Bethe lattice.

تحميل البحث