Toward an accurate mass function for precision cosmology


الملخص بالإنكليزية

Cosmological surveys aim to use the evolution of the abundance of galaxy clusters to accurately constrain the cosmological model. In the context of LCDM, we show that it is possible to achieve the required percent level accuracy in the halo mass function with gravity-only cosmological simulations, and we provide simulation start and run parameter guidelines for doing so. Some previous works have had sufficient statistical precision, but lacked robust verification of absolute accuracy. Convergence tests of the mass function with, for example, simulation start redshift can exhibit false convergence of the mass function due to counteracting errors, potentially misleading one to infer overly optimistic estimations of simulation accuracy. Percent level accuracy is possible if initial condition particle mapping uses second order Lagrangian Perturbation Theory, and if the start epoch is between 10 and 50 expansion factors before the epoch of halo formation of interest. The mass function for halos with fewer than ~1000 particles is highly sensitive to simulation parameters and start redshift, implying a practical minimum mass resolution limit due to mass discreteness. The narrow range in converged start redshift suggests that it is not presently possible for a single simulation to capture accurately the cluster mass function while also starting early enough to model accurately the numbers of reionisation era galaxies, whose baryon feedback processes may affect later cluster properties. Ultimately, to fully exploit current and future cosmological surveys will require accurate modeling of baryon physics and observable properties, a formidable challenge for which accurate gravity-only simulations are just an initial step.

تحميل البحث