Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator


الملخص بالإنكليزية

The breaking of time-reversal symmetry by ferromagnetism is predicted to yield profound changes to the electronic surface states of a topological insulator. Here, we report on a concerted set of structural, magnetic, electrical and spectroscopic measurements of MBS thin films wherein photoemission and x-ray magnetic circular dichroism studies have recently shown surface ferromagnetism in the temperature range 15 K $leq T leq 100$ K, accompanied by a suppressed density of surface states at the Dirac point. Secondary ion mass spectroscopy and scanning tunneling microscopy reveal an inhomogeneous distribution of Mn atoms, with a tendency to segregate towards the sample surface. Magnetometry and anisotropic magnetoresistance measurements are insensitive to the high temperature ferromagnetism seen in surface studies, revealing instead a low temperature ferromagnetic phase at $T lesssim 5$ K. The absence of both a magneto-optical Kerr effect and anomalous Hall effect suggests that this low temperature ferromagnetism is unlikely to be a homogeneous bulk phase but likely originates in nanoscale near-surface regions of the bulk where magnetic atoms segregate during sample growth. Although the samples are not ideal, with both bulk and surface contributions to electron transport, we measure a magnetoconductance whose behavior is qualitatively consistent with predictions that the opening of a gap in the Dirac spectrum drives quantum corrections to the conductance in topological insulators from the symplectic to the orthogonal class.

تحميل البحث