Complex Orthogonal Matching Pursuit and Its Exact Recovery Conditions


الملخص بالإنكليزية

In this paper, we present new results on using orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries for complex cases (i.e., complex measurement vector, complex dictionary and complex additive white Gaussian noise (CAWGN)). A sufficient condition that OMP can recover the optimal representation of an exactly sparse signal in the complex cases is proposed both in noiseless and bound Gaussian noise settings. Similar to exact recovery condition (ERC) results in real cases, we extend them to complex case and derivate the corresponding ERC in the paper. It leverages this theory to show that OMP succeed for k-sparse signal from a class of complex dictionary. Besides, an application with geometrical theory of diffraction (GTD) model is presented for complex cases. Finally, simulation experiments illustrate the validity of the theoretical analysis.

تحميل البحث