Extragalactic Science, Cosmology and Galactic Archaeology with the Subaru Prime Focus Spectrograph (PFS)


الملخص بالإنكليزية

The Subaru Prime Focus Spectrograph (PFS) is a massively-multiplexed fiber-fed optical and near-infrared 3-arm spectrograph (N_fiber=2400, 380<lambda<1260nm, 1.3 degree diameter FoV), offering unique opportunities in survey astronomy. Here we summarize the science case feasible for a survey of Subaru 300 nights. We describe plans to constrain the nature of dark energy via a survey of emission line galaxies spanning a comoving volume of 9.3 (Gpc/h)^3 in the redshift range 0.8<z<2.4. In each of 6 redshift bins, the cosmological distances will be measured to 3% precision via BAO, and redshift-space distortions will be used to constrain structure growth to 6% precision. In the GA program, radial velocities and chemical abundances of stars in the Milky Way and M31 will be used to infer the past assembly histories of spiral galaxies and the structure of their dark matter halos. Data will be secured for 10^6 stars in the Galactic thick-disk, halo and tidal streams as faint as V~22, including stars with V < 20 to complement the goals of the Gaia mission. A medium-resolution mode with R = 5000 to be implemented in the red arm will allow the measurement of multiple alpha-element abundances and more precise velocities for Galactic stars, elucidating the detailed chemo-dynamical structure and evolution of each of the main stellar components of the Milky Way Galaxy and of its dwarf spheroidal galaxies. For the extragalactic program, our simulations suggest the wide avelength range will be powerful in probing the galaxy population and its clustering over a wide redshift range. We propose to conduct a color-selected survey of 1<z<2 galaxies and AGN over 16 deg^2 to J~23.4, yielding a fair sample of galaxies with stellar masses above ~10^{10}Ms at z~2. A two-tiered survey of higher redshift LBGs and LAEs will quantify the properties of early systems close to the reionization epoch.

تحميل البحث