The large majority of neutron stars (NSs) in low mass X-ray binaries (LMXBs) have never shown detectable pulsations despite several decades of intense monitoring. The reason for this remains an unsolved problem that hampers our ability to measure the spin frequency of most accreting NSs. The accreting millisecond X-ray pulsar (AMXP) HETE J1900.1--2455 is an intermittent pulsar that exhibited pulsations at about 377 Hz for the first 2 months and then turned in a non-pulsating source. Understanding why this happened might help to understand why most LMXBs do not pulsate. We present a 7 year long coherent timing analysis of data taken with the Rossi X-ray Timing Explorer. We discover new sporadic pulsations that are detected on a baseline of about 2.5 years. We find that the pulse phases anti-correlate with the X-ray flux as previously discovered in other AMXPs. We place stringent upper limits of 0.05% rms on the pulsed fraction when pulsations are not detected and identify an enigmatic pulse phase drift of ~180 degrees in coincidence with the first disappearance of pulsations. Thanks to the new pulsations we measure a long term spin frequency derivative whose strength decays exponentially with time. We interpret this phenomenon as evidence of magnetic field burial.