In this paper we present a new model for modeling the diffusion and relative dispersion of particles in homogeneous isotropic turbulence. We use an Heisenberg-like Hamiltonian to incorporate spatial correlations between fluid particles, which are modeled by stochastic processes correlated in time. We are able to reproduce the ballistic regime in the mean squared displacement of single particles and the transition to a normal diffusion regime for long times. For the dispersion of particle pairs we find a $t^{2}$-dependence of the mean squared separation at short times and a $t$-dependence for long ones. For intermediate times indications for a Richardson $t^{3}$ law are observed in certain situations. Finally the influence of inertia of real particles on the dispersion is investigated.