Systematic Trends In Sloan Digital Sky Survey Photometric Data


الملخص بالإنكليزية

We investigate the Sloan Digital Sky Survey (SDSS) photometry from Data Release 8 (DR8) in the search for systematic trends that still exist after the calibration effort of Padmanabhan et al. We consider both the aperture and point-spread function (PSF) magnitudes in DR8. Using the objects with repeat observations, we find that a large proportion of the aperture magnitudes suffer a ~0.2-2% systematic trend as a function of PSF full-width half-maximum (FWHM), the amplitude of which increases for fainter objects. Analysis of the PSF magnitudes reveals more complicated systematic trends of similar amplitude as a function of PSF FWHM and object brightness. We suspect that sky over-subtraction is the cause of the largest amplitude trends as a function of PSF FWHM. We also detect systematic trends as a function of subpixel coordinates for the PSF magnitudes with peak-to-peak amplitudes of ~1.6 mmag and ~4-7 mmag for the over- and under-sampled images, respectively. We note that the systematic trends are similar in amplitude to the reported ~1% and ~2% precision of the SDSS photometry in the griz and u wavebands, respectively, and therefore their correction has the potential to substantially improve the SDSS photometric precision. We provide an {tt IDL} program specifically for this purpose. Finally, we note that the SDSS aperture and PSF magnitude scales are related by a non-linear transformation that departs from linearity by ~1-4%, which, without correction, invalidates the application of a photometric calibration model derived from the aperture magnitudes to the PSF magnitudes, as has been done for SDSS DR8.

تحميل البحث