We present a soft X-ray angle-resolved photoemission spectroscopy (SX-ARPES) study of the stoichiometric pnictide superconductor LaRu2P2. The observed electronic structure is in good agreement with density functional theory (DFT) calculations. However, it is significantly different from its counterpart in high-temperature superconducting Fe-pnictides. In particular the bandwidth renormalization present in the Fe-pnictides (~2 - 3) is negligible in LaRu2P2 even though the mass enhancement is similar in both systems. Our results suggest that the superconductivity in LaRu2P2 has a different origin with respect to the iron pnictides. Finally we demonstrate that the increased probing depth of SX-ARPES, compared to the widely used ultraviolet ARPES, is essential in determining the bulk electronic structure in the experiment.