The core-level electronic structures of the exfoliated graphene sheets on a Au-coated SiOx substrate have been studied by synchrotron radiation photoelectron spectroscopy (SR-PES) on a micron-scale. The graphene was firstly demonstrated its visibility on the Au-coated SiOx substrate by micro-optical characterization, and then conducted into SR-PES study. Because of the elimination of charging effect, precise C 1s core-level characterization clearly shows graphitic and contaminated carbon states of graphene. Different levels of Au-coating-induced p-type doping on single- and double-layer graphene sheets were also examined in the C 1s core-level shift. The Au-coated SiOx substrate can be treated as a simple but high-throughput platform for in situ studying graphene under further hybridization by PES.