Tomographic readout of an opto-mechanical interferometer


الملخص بالإنكليزية

The quantum state of light changes its nature when being reflected off a mechanical oscillator due to the latters susceptibility to radiation pressure. As a result, a coherent state can transform into a squeezed state and can get entangled with the motion of the oscillator. The complete tomographic reconstruction of the state of light requires the ability to readout arbitrary quadratures. Here we demonstrate such a readout by applying a balanced homodyne detector to an interferometric position measurement of a thermally excited high-Q silicon nitride membrane in a Michelson-Sagnac interferometer. A readout noise of $unit{1.9 cdot 10^{-16}}{metre/sqrt{hertz}}$ around the membranes fundamental oscillation mode at $unit{133}{kilohertz}$ has been achieved, going below the peak value of the standard quantum limit by a factor of 8.2 (9 dB). The readout noise was entirely dominated by shot noise in a rather broad frequency range around the mechanical resonance.

تحميل البحث