Elliptic Genera of Non-compact Gepner Models and Mirror Symmetry


الملخص بالإنكليزية

We consider tensor products of N=2 minimal models and non-compact conformal field theories with N=2 superconformal symmetry, and their orbifolds. The elliptic genera of these models give rise to a large and interesting class of real Jacobi forms. The tensor product of conformal field theories leads to a natural product on the space of completed mock modular forms. We exhibit families of non-compact mirror pairs of orbifold models with c=9 and show explicitly the equality of elliptic genera, including contributions from the long multiplet sector. The Liouville and cigar deformed elliptic genera transform into each other under the mirror transformation.

تحميل البحث