Multialternating graded polynomials and growth of polynomial identities


الملخص بالإنكليزية

Let G be a finite group and A a finite dimensional G-graded algebra over a field of characteristic zero. When A is simple as a G-graded algebra, by mean of Regev central polynomials we construct multialternating graded polynomials of arbitrarily large degree non vanishing on A. As a consequence we compute the exponential rate of growth of the sequence of graded codimensions of an arbitrary G-graded algebra satisfying an ordinary polynomial identity. In particular we show it is an integer. The result was proviously known in case G is abelian.

تحميل البحث