The growth of single layer graphene nanometer size domains by solid carbon source molecular beam epitaxy on hexagonal boron nitride (h-BN) flakes is demonstrated. Formation of single-layer graphene is clearly apparent in Raman spectra which display sharp optical phonon bands. Atomic-force microscope images and Raman maps reveal that the graphene grown depends on the surface morphology of the h-BN substrates. The growth is governed by the high mobility of the carbon atoms on the h-BN surface, in a manner that is consistent with van der Waals epitaxy. The successful growth of graphene layers depends on the substrate temperature, but is independent of the incident flux of carbon atoms.