The homogeneous 5D projection and realization of quark and hadron masses


الملخص بالإنكليزية

In this work the homogeneous 5D space-time metric is introduced. Projection operators that map the 5D space-time manifold into a 4D Lorentzian space-time are explicitly given in matrix form. It is emphasized that the concept of proper time is the criterion for the projection. A homogeneous 5D energy-momentum manifold produces naturally the uncertainty principle, and from which we obtained the 5D metric operator, together with the 5D vector and mass-less spinor fields. A naturally coupled product of these two fields is also a solution of the 5D metric operator. Thus the coupling constant is identified as the unit charge. The charged mass-less spinor is coined as the e-trino. Hence the vector field generated by such e-trinos is derived, such that in the 4x1 Hilbert space this vector potential can be identified as the Maxwell monopole potential. Through gauge invariance the concept of charge per unit mass is introduced, which then leads to the mapping of the 5D energy-momentum into that of SU(2)xL and SU(3)xL via the time-shift projection P0 and the conformal space projection P1, respectively. The P1 projection gives us the fractional charged quarks. These quark currents generate both the meson and baryon gluon fields, which in turn generate the meson and baryon masses given in the Eight-Fold-Way representations, removing the necessity of introducing a Higgs vacuum.

تحميل البحث