We used coherent light scattering in a multi-speckle detection scheme to investigate the mesoscale dynamics in aqueous foam. Time-resolved correlation of the scattered speckle intensities reveals the details of foam dynamics during aging. We introduce Temporal Contrast Analysis, a novel statistical tool that can be effective in characterizing structural rearrangements. Using Temporal Contrast Analysis we were able to detect two distinct dynamical components present during foam aging: spontaneous and intermittent, avalanche-like events and continuous, flow-like rearrangements in the foam structure. We were able to measure these contributions separately from the intrinsic statistical noise contribution, and thereby independently analyze the decay of each dynamical component during foam aging process.