A numerical retro-action model relates rocky coast erosion to percolation theory


الملخص بالإنكليزية

We discuss various situations where the formation of rocky coast morphology can be attributed to the retro-action of the coast morphology itself on the erosive power of the sea. Destroying the weaker elements of the coast, erosion can creates irregular seashores. In turn, the geometrical irregularity participates in the damping of sea-waves, decreasing their erosive power. There may then exist a mutual self-stabilization of the wave amplitude together with the irregular morphology of the coast. A simple model of this type of stabilization is discussed. The resulting coastline morphologies are diverse, depending mainly on the morphology/damping coupling. In the limit case of weak coupling, the process spontaneously builds fractal morphologies with a dimension close to 4/3. This provides a direct connection between the coastal erosion problem and the theory of percolation. For strong coupling, rugged but non-fractal coasts may emerge during the erosion process, and we investigate a geometrical characterization in these cases. The model is minimal, but can be extended to take into account heterogeneity in the rock lithology and various initial conditions. This allows to mimic coastline complexity, well beyond simple fractality. Our results suggest that the irregular morphology of coastlines as well as the stochastic nature of erosion are deeply connected with the critical aspects of percolation phenomena.

تحميل البحث