We investigate the relativistic mean field theory of nuclear matter at finite temperature and baryon density taking into account of nonlinear statistical effects, characterized by power-law quantum distributions. The analysis is performed by requiring the Gibbs conditions on the global conservation of baryon number and electric charge fraction. We show that such nonlinear statistical effects play a crucial role in the equation of state and in the formation of mixed phase also for small deviations from the standard Boltzmann-Gibbs statistics.